(D^4+2D^3-3D^2)y=3e^2x+4sinx

Simple and best practice solution for (D^4+2D^3-3D^2)y=3e^2x+4sinx equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (D^4+2D^3-3D^2)y=3e^2x+4sinx equation:


Simplifying
(D4 + 2D3 + -3D2) * y = 3e2x + 4sinx

Reorder the terms:
(-3D2 + 2D3 + D4) * y = 3e2x + 4sinx

Reorder the terms for easier multiplication:
y(-3D2 + 2D3 + D4) = 3e2x + 4sinx
(-3D2 * y + 2D3 * y + D4 * y) = 3e2x + 4sinx
(-3yD2 + 2yD3 + yD4) = 3e2x + 4sinx

Solving
-3yD2 + 2yD3 + yD4 = 3e2x + 4insx

Solving for variable 'y'.

Move all terms containing y to the left, all other terms to the right.

Reorder the terms:
-3e2x + -4insx + -3yD2 + 2yD3 + yD4 = 3e2x + 4insx + -3e2x + -4insx

Reorder the terms:
-3e2x + -4insx + -3yD2 + 2yD3 + yD4 = 3e2x + -3e2x + 4insx + -4insx

Combine like terms: 3e2x + -3e2x = 0
-3e2x + -4insx + -3yD2 + 2yD3 + yD4 = 0 + 4insx + -4insx
-3e2x + -4insx + -3yD2 + 2yD3 + yD4 = 4insx + -4insx

Combine like terms: 4insx + -4insx = 0
-3e2x + -4insx + -3yD2 + 2yD3 + yD4 = 0

The solution to this equation could not be determined.

See similar equations:

| x^2-5=8 | | -5+8=m-8 | | x(y^2-z^2)p+y(z^2-x^2)=z(x^2-y^2) | | -5(x+5)+11x= | | (1-x)ydx+(1+y)xdy=0 | | Y+4=-2+9 | | y^2dx+(xy+x^2)dy=0 | | -50=25y | | y=(1+p)x+p^2 | | 7(y-7)= | | p+q=z | | p^2-2p-3=0 | | 4x^2-25x+21=-9x+6 | | x^4-48x^2-49=0 | | x^2+7x-17=3x+4 | | x^2-12x+34=2 | | x^2-23x+33=-8x-3 | | x^2+8x+18=6 | | 3x+2=4x+2 | | 2log(x+1)-log(x+2)=log(2x-1) | | 3x-16=6x-4 | | 4x-8=48 | | 30x+5=28+20x | | |x+1|+3=0 | | |x+1|=6 | | 3x^3-2x^2-5x+4=0 | | 3x^2-2x^2-5x+4=0 | | 3x^2-2x^2-5x+4= | | 10x-20x=16x+48 | | 5x-[3-(x-1)]=x+3(26x-8) | | 3x-(2-x)=0 | | 2p+0.4=2 |

Equations solver categories